Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations
نویسنده
چکیده
In this work we continue the study of the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint (pseudo)differential operators with small random perturbations, by treating the case of multiplicative perturbations in arbitrary dimension. We were led to quite essential improvements of many of the probabilistic aspects. Résumé Dans ce travail nous continuons l’étude de l’asymptotique de Weyl de la distribution des valeurs propres d’opérateurs (pseudo-)différentiels avec des perturbations aléatoires petites, en traitant le cas des perturbations multiplicatives en dimension quelconque. Nous avons été amenés à faire des améliorations essentielles des aspects probabilistes.
منابع مشابه
Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations
— In this work we extend a previous work about the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint differential operators with small multiplicative random perturbations, by treating the case of operators on compact manifolds.
متن کاملNon-self-adjoint Differential Operators
We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...
متن کاملSome results on non-self-adjoint operators, a survey
This text is a survey of recent results obtained by the author and collaborators on different problems for non-self-adjoint operators. The topics are: Kramers-Fokker-Planck type operators, spectral asymptotics in two dimensions and Weyl asymptotics for the eigenvalues of non-self-adjoint operators with small random perturbations. In the introduction we also review the notion of pseudo-spectrum ...
متن کاملPerturbation of multiparameter non-self-adjoint boundary eigenvalue problems for operator matrices
We consider two-point non-self-adjoint boundary eigenvalue problems for linear matrix differential operators. The coefficient matrices in the differential expressions and the matrix boundary conditions are assumed to depend analytically on the complex spectral parameter λ and on the vector of real physical parameters p. We study perturbations of semi-simple multiple eigenvalues as well as pertu...
متن کاملStable Directions for Excited States of Nonlinear Schrödinger Equations
We consider nonlinear Schrödinger equations in R. Assume that the linear Hamiltonians have two bound states. For certain finite codimension subset in the space of initial data, we construct solutions converging to the excited states in both non-resonant and resonant cases. In the resonant case, the linearized operators around the excited states are non-self adjoint perturbations to some linear ...
متن کامل